Skip to content

eBPF 入门开发实践教程八:在 eBPF 中使用 exitsnoop 监控进程退出事件,使用 ring buffer 向用户态打印输出

eBPF (Extended Berkeley Packet Filter) 是 Linux 内核上的一个强大的网络和性能分析工具。它允许开发者在内核运行时动态加载、更新和运行用户定义的代码。

本文是 eBPF 入门开发实践教程的第八篇,在 eBPF 中使用 exitsnoop 监控进程退出事件。

ring buffer

现在有一个新的 BPF 数据结构可用,eBPF 环形缓冲区(ring buffer)。它解决了 BPF perf buffer(当今从内核向用户空间发送数据的事实上的标准)的内存效率和事件重排问题,同时达到或超过了它的性能。它既提供了与 perf buffer 兼容以方便迁移,又有新的保留/提交API,具有更好的可用性。另外,合成和真实世界的基准测试表明,在几乎所有的情况下,所以考虑将其作为从BPF程序向用户空间发送数据的默认选择。

eBPF ringbuf vs eBPF perfbuf

只要 BPF 程序需要将收集到的数据发送到用户空间进行后处理和记录,它通常会使用 BPF perf buffer(perfbuf)来实现。Perfbuf 是每个CPU循环缓冲区的集合,它允许在内核和用户空间之间有效地交换数据。它在实践中效果很好,但由于其按CPU设计,它有两个主要的缺点,在实践中被证明是不方便的:内存的低效使用和事件的重新排序。

为了解决这些问题,从Linux 5.8开始,BPF提供了一个新的BPF数据结构(BPF map)。BPF环形缓冲区(ringbuf)。它是一个多生产者、单消费者(MPSC)队列,可以同时在多个CPU上安全共享。

BPF ringbuf 支持来自 BPF perfbuf 的熟悉的功能:

  • 变长的数据记录。
  • 能够通过内存映射区域有效地从用户空间读取数据,而不需要额外的内存拷贝和/或进入内核的系统调用。
  • 既支持epoll通知,又能以绝对最小的延迟进行忙环操作。

同时,BPF ringbuf解决了BPF perfbuf的以下问题:

  • 内存开销。
  • 数据排序。
  • 浪费的工作和额外的数据复制。

exitsnoop

本文是 eBPF 入门开发实践教程的第八篇,在 eBPF 中使用 exitsnoop 监控进程退出事件,并使用 ring buffer 向用户态打印输出。

使用 ring buffer 向用户态打印输出的步骤和 perf buffer 类似,首先需要定义一个头文件:

头文件:exitsnoop.h

#ifndef __BOOTSTRAP_H
#define __BOOTSTRAP_H

#define TASK_COMM_LEN 16
#define MAX_FILENAME_LEN 127

struct event {
    int pid;
    int ppid;
    unsigned exit_code;
    unsigned long long duration_ns;
    char comm[TASK_COMM_LEN];
};

#endif /* __BOOTSTRAP_H */

源文件:exitsnoop.bpf.c

#include "vmlinux.h"
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_tracing.h>
#include <bpf/bpf_core_read.h>
#include "exitsnoop.h"

char LICENSE[] SEC("license") = "Dual BSD/GPL";

struct {
    __uint(type, BPF_MAP_TYPE_RINGBUF);
    __uint(max_entries, 256 * 1024);
} rb SEC(".maps");

SEC("tp/sched/sched_process_exit")
int handle_exit(struct trace_event_raw_sched_process_template* ctx)
{
    struct task_struct *task;
    struct event *e;
    pid_t pid, tid;
    u64 id, ts, *start_ts, start_time = 0;

    /* get PID and TID of exiting thread/process */
    id = bpf_get_current_pid_tgid();
    pid = id >> 32;
    tid = (u32)id;

    /* ignore thread exits */
    if (pid != tid)
        return 0;

    /* reserve sample from BPF ringbuf */
    e = bpf_ringbuf_reserve(&rb, sizeof(*e), 0);
    if (!e)
        return 0;

    /* fill out the sample with data */
    task = (struct task_struct *)bpf_get_current_task();
    start_time = BPF_CORE_READ(task, start_time);

    e->duration_ns = bpf_ktime_get_ns() - start_time;
    e->pid = pid;
    e->ppid = BPF_CORE_READ(task, real_parent, tgid);
    e->exit_code = (BPF_CORE_READ(task, exit_code) >> 8) & 0xff;
    bpf_get_current_comm(&e->comm, sizeof(e->comm));

    /* send data to user-space for post-processing */
    bpf_ringbuf_submit(e, 0);
    return 0;
}

这段代码展示了 ring buffer 的 reserve/submit 模式,这是一种高效的数据传输方式。

让我们看看它如何工作。我们首先定义了一个 BPF_MAP_TYPE_RINGBUF 类型的 map,大小为 256KB。这个环形缓冲区是所有 CPU 共享的,解决了 perf buffer 每个 CPU 单独缓冲区导致的内存浪费问题。

handle_exit 函数中,我们使用了 reserve/submit 模式。首先用 bpf_ringbuf_reserve 在 ring buffer 中预留空间——这会返回一个指向预留内存的指针。然后我们直接在这块内存中填充数据:计算进程运行时长(当前时间减去启动时间)、读取 PID、PPID、退出代码和进程名。最后用 bpf_ringbuf_submit 提交数据到用户空间。

这种模式的优势是避免了额外的内存拷贝,我们直接在 ring buffer 中写入数据,而不是先在栈上构建然后再拷贝。注意我们只关心进程退出(PID == TID),忽略了线程退出事件。

Compile and Run

我们使用 eunomia-bpf 来编译和运行这个示例。你可以从 https://github.com/eunomia-bpf/eunomia-bpf 安装它。

Compile:

docker run -it -v `pwd`/:/src/ ghcr.io/eunomia-bpf/ecc-`uname -m`:latest

Or

$ ecc exitsnoop.bpf.c exitsnoop.h
Compiling bpf object...
Generating export types...
Packing ebpf object and config into package.json...

Run:

$ sudo ./ecli run package.json 
TIME     PID     PPID    EXIT_CODE  DURATION_NS  COMM    
21:40:09  42050  42049   0          0            which
21:40:09  42049  3517    0          0            sh
21:40:09  42052  42051   0          0            ps
21:40:09  42051  3517    0          0            sh
21:40:09  42055  42054   0          0            sed
21:40:09  42056  42054   0          0            cat
21:40:09  42057  42054   0          0            cat
21:40:09  42058  42054   0          0            cat
21:40:09  42059  42054   0          0            cat

总结

本文介绍了如何使用 ring buffer 监控 Linux 系统中的进程退出事件。ring buffer 相比 perf buffer 有更好的内存效率和性能,应该作为从内核向用户空间发送数据的首选。

如果您希望学习更多关于 eBPF 的知识和实践,可以访问我们的教程代码仓库 https://github.com/eunomia-bpf/bpf-developer-tutorial 或网站 https://eunomia.dev/zh/tutorials/ 以获取更多示例和完整的教程。

Share on Share on