Richmond, Virginia | November 13-15, 2023

3pftime: Userspace eB
runtime

https://github.com/eunomia-bpf/bpftime

Yusheng Zheng
yunwei356@gmail.com

https://github.com/eunomia-bpf/bpftime

Agenda

* Why a new userspace eBPF runtime?

* Kernel Uprobe Performance Issues

* Kernel eBPF Security Concerns and limited configurable
* Other userspace eBPF runtime limitations

* Existing Non-kernel eBPF Usecases

* Introduction to bpftime
* How It works

* Examples & benchmark
* Roadmap

* Q&A

Why bpftime?

Uprobe: User-level dynamic tracing
1. Kernel Uprobe Performance Issues:

* Current UProbe implementation
necessitates two kernel context copies.

* Results in significant performance overhead.

* Not suitable for real-time monitoring in
latency-sensitive applications.

And Kernel Syscall tracepoint:

Syscall tracepoints will hook all syscalls and
require filter for specific process

Overhead (ns)

pd
(e}
S

2590 3633

pud
(=
w

[y
()
N

Uprobe's Wide Adoption in Production
* Traces user-space protocols: SSL, TLS, HTTP2.

* Monitors memory allocation and detects leaks.

Tracks threads and goroutine dynamics.

Provides passive, non-instrumental tracing.

And more...

Verifier (36)

30% Miscellaneous (16)

Why bpftime”

8% JIT Compiler (4)

2. Kernel eBPF Security Concerns

Figure 1: A tally of eBPF-related CVEs from 2010 to . .
2023, There are a total of 56 CVEs, the majority of eBPF programs run in kernel mode, requiring root access.

which were discovered in the verifier.

* Increases attack surface, posing risks like container escape.
* Inherent vulnerabilities in eBPF can lead to Kernel Exploits.

Table 2: The offensive eBPF helpers. Kernel eBPF limited conflgurable

15 _Helper Name Fancionality * Verifier has limited the operation of eBPF, config eBPF or
HI bpf_probe_write_user Write any process’s user space memory make |t Turlng_complete reqU|reS kernel Change

H2 bpf_probe_read_user Read any process’s user space memory
H3 bpf_override_return Alter return code of a kernel function .
H4 bpf_send_signal Send signal to kill any process e Add new hEIper or new featu re also requires kernel Change

H5 bpf_map_get_fd_by_id Obtain eBPF programs’ eBPF maps fd

Why bpftime?

3. Current userspace eBPF runtime Existing userspace eBPF

Limitations
» Ubpf: ELF parsing, simple hash map,

arm64, x86 JIT, Helper. GitHub.
Possible user space eBPF usecases: * Rbpf: Helper, JIT, VM. GitHub.

* User space observability * Drawbacks:
 Complex integration and usage

, , _ * cannot use kernel eBPF loader and
* User space Configuration, plugins and toolchains, e.g. libbpf/clang

filters .

* User space network

No attach support.

* No interprocess or kernel maps

. aCcess.
Cannot run workloads in current eBPF

ecosystem with existing userspace eBPF * Limited functionality in userspace.

e JIT supports for only arm64 or x86

https://github.com/iovisor/ubpf
https://github.com/qmonnet/rbpf

-xi1sting Non-kernel eBPF Usecases

* Qemu+uBPF: Combines Qemu with uBPF. Video.
Oko: Extends Open vSwitch-DPDK with BPF. Enhances tools for better integration. GitHub.

Solana: Userspace eBPF for High-performance Smart Contract. GitHub.

DPDK eBPF: Libraries for fast packet processing. Enhanced by Userspace eBPF.

eBPF for Windows: Brings eBPF toolchains and runtime to Windows kernel.
Papers:

» Rapidpatch: Firmware Hotpatching for Real-Time Embedded Devices

* Femto-Containers: Lightweight Virtualization and Fault Isolation For Small Software
Functions on Low-Power loT Microcontrollers

Networks + plugins + edge runtime + smart contract + hot patch + Windows

https://www.youtube.com/watch?v=yE1RXf9d7ic
https://github.com/Orange-OpenSource/Ok
https://github.com/solana-labs/solana
https://www.usenix.org/conference/usenixsecurity22/presentation/he-yi

Bpftime: Userspace eBPF runtime

bpftime, a full-featured, high-performance eBPF runtime designed to operate in userspace:

* Fast Uprobe and Syscall hook capabilities
* Userspace uprobe can be 10x faster than kernel uprobe
* No mannual instrumentation or restart required, similar to kernel probe
* Trace the user functions, syscalls or modify user function behavior

* Compatible with kernel eBPF toolchains and libraries
* No need modify eBPF App

* Interprocess maps or kernel maps support, work together with kernel eBPF
* Support “offload to userspace” and verify with kernel verifier

* New LLVM JIT compiler for eBPF

Current support features

Userspace eBPF shared memory map types: Prog types can attached in userspace:

* BPF_MAP_TYPE_HASH * tracepoint:raw_syscalls:sys_enter
« BPF_MAP TYPE ARRAY

« BPF_MAP_TYPE_RINGBUF
 BPF_MAP_TYPE_PERF_EVENT_ ARRAY
 BPF_MAP_TYPE_PERCPU_ARRAY

tracepoint:syscalls:sys_exit_*

tracepoint:syscalls:sys_enter_*

uretprobe:*

+ BPF_MAP_TYPE_PERCPU_HASH * uprobe:*

User-kernel shared maps: You can also define other static

e BPF MAP TYPE HASH tracep0ints and prog types in userspace
. app.

 BPF_MAP_TYPE_ARRAY
« BPF_MAP_TYPE_PERCPU_ARRAY
« BPF_MAP_TYPE_PERF_EVENT_ ARRAY

Support 22 kernel helper functions
Support kernel or userspace verifier

Test JIT with bpf_conformance

Jprobe and kprobe mix: 2 modes

* Run eBPF in userspace only (mode 1)
* Can run without kernel on non-linux systems
* Not very suitable for large eBPF applications
* maps In shm can't be used by kernel eBPF programs

* Run eBPF in userspace with kernel eBPF, a bpftime-daemon (mode 2)
* Compatible with kernel uprobe in behavior
* Attach to new process or running process automatically
* Support mix of uprobe and kprobe, socket:
* Similar to fuse: userspace daemon + kernel code

* No modify kernel, using eBPF module to monitor or change the behavior of
BPF syscalls

10

-Xamples

Use uprobe to monitor
userspace malloc
function in libc, with
hash maps in
userspace

..:'!”‘:"!
. - . I‘h

.. :.. l.: .l'

@t"t;..lﬁ. 3y lf

Lot Wi §

To get started, you can build and run a libbpf based eBPF program starts with bpftime cli:

make -C example/malloc # Build the eBPF program example
bpftime load ./example/malloc/malloc

In another shell, Run the target program with eBPF inside:

$ bpftime start ./example/malloc/test
Hello malloc!

malloc called from pid 250215
continue malloc...

malloc called from pid 250215

You can also dynamically attach the eBPF program with a running process:

$./example/malloc/test & echo $! # The pid is 121771
[1] 1e1771

101771

continue mallac...

continue mallac...

And attach to it

$ sudo bpftime attach 101771 # You may need to run make install in root
Inject: “/root/.bpftime/libbpftime-agent.so"
Successfully injected. ID: 1

You can see the output from original program:

$ bpftime load ./example/malloc/malloc

12:44:35
pid=247299 malloc calls: 18
pid=247322 malloc calls: 1@

11

-Xamples

Use uprobe to monitor
userspace malloc
function in libc, with
hash maps, compatible
with kernel

@..“f"‘i"*

; "'- a::,.v“‘*'l 4 i

by X RE

@t“ﬂyﬁ. 3y i

Lot Wi §

Run daemon »

$ sudo SPDLOG_LEVEL=Debug build/daemon/bpftime_daemon
[2023-10-24 11:87:13.143] [info] Global shm constructed. shm_open_type @ for bpftime_maps_shm

Run malloc example »

$ sudo example/malloc/malloc

libbpf: loading object 'malloc_bpf' from buffer
11:08:

11:88:12

11:08:

Trace malloc calls in target »

$ sudo example/maslloc/victim
malloc called from pid 12314
continue malloc...

The other console will print the malloc calls in the target process.

pid=113413 malloc calls: 9

12

Mode 1: Run
eBPF In
userspace only

* Can run tools like bcc and bpftrace without
modification

13

eBPF program source
A eBPF

\ 4

Existing eBPF toolchains:
clang/bpftool/bpftrace:

Userspace

eBPF userspace applications

W eBPF
eBPF bytecode
| Userspace library: libbpf:-
7S
load ll

\ 4

Kernel space

Original Kernel eBPF
design: for reference

r WespF bpf syscall

A

Target process

A

Context

function
Uprobe _
breakpoint | _

/j

switch)

~ (

\ 4

‘ verifier \ <BFF s

Trap

syscall

'

r

\ 4

tracepoint |

eBPF program <_'[

kprobe

WeBPF |

[compier

A

socket

14

XeBPF

eBPF program source

A

y

Existing eBPF toolchains:

clang/bpftool/bpftrace:-

eBPF userspace applications

A eBPF
eBPF bytecode

|

bpftime:

userspace eBPF
only (mode 1)

Userspace

\ 4

Userspace library: libbpf:

¢ it

bpf function call v

17

bpftime—syscavll.so

Target process

AOT]
[compiler(todo)] [verifier J

Z s

—~—

inlineHook §
function S uprobe]
syscall |*—] tracepoint]

Pt
bpftime-agent.so ‘
[T W eBPF
| compiler program

' inject

U

AV4
[E eBPF progs j E eBPF maps j

Share memory]

Kernel space

atta C.L

socket

—)

[kprobe

15

HOW It WOrKs:
| ﬂj eCJ[' OonN Injection - the summary

Support two types of
injecting runtime share
library:

* For a running process:
Ptrace (Based on Frida)

i

* At the beginning of a new
process: LD _PRELOAD

debuggee debugger

16

Current hook implementation is based on binary

How It WOrks: rewriting
_r.a m po ‘ | n e * Userspace function hook: frida-gum

* Syscall hooks: zpoline and pmem/syscall_intercept.
* Can be easily extend with new trampoline methods
replace m“.‘f,i'i'&.’f':.‘:.mw Virtual Memory Siseen
nquaywnllAnr.%ququssyuw‘m.w ax0 -
syscallisysenter callq “%srax 0’” . .
. i Interception - the basics
et | rewmen) ; s
e | T/ R : '
B o : e :
e | [e
. call foo
system call
hook Nl

movg S0x3, %erax /
calq “%erax

relun to USerspace

program
ret

§

maovg SN %erax
wf: |

Figure I: zpoline overview. The trampoline code is shaded.

17

https://github.com/frida/frida-gum
https://www.usenix.org/conference/atc23/presentation/yasukata
https://github.com/pmem/syscall_intercept

Mode 2:

eBPF In
userspace work
with kernel

Can run complex observability agents like
deepflow

Transparently work with kernel eBPF
Using kernel eBPF maps
“‘Offload” eBPF to userspace

18

eBPF userspace applications
eBPF program source K eBPF
WesPF eBPF bytecode Target process [uprf)be]
Y . . bpftime-agent.so
[Existing eBPF toolchains] jitiseispacelibrantllinhphs &
eBPF
| . User bpf
Monit d interact - —
wnsona et [Bpfime T ey daemon Userspace
events and proc exec daemon v

PAN

e 07 sespr DpPf syscall Mmap or ring buffer (User and kernel)

Bpftime kvernel > ﬁ ii Kernel space

Code (eBPF) | "% ¥

bpftime: E eBPF maps j
userspace eBPF 3

mix with kernel —-[kprobe |

eBPF (mode 2) JIT >
Lcompiler Kgissf 4.[‘_ socket

attach

A

19

Benchmark: attach overheaad

How is the performance of userspace uprobe compared to kernel uprobes ?

Probe/Tracepoint Types Kernel (ns) Userspace (ns)
Uprobe 3224172760 314.569110
Uretprobe 3996.799580 381.270270
Syscall Hook 151.82801 232.57691

Embedding (Static Tracepoints) = Not avaliable 110.008430

stremp_full log2_int 16 Prime simple memcpy switch stremp_fail memory_a_plus_|
14

4000 350000 o
140000
500000 5000 40000
12 iso0 3500
300000
120000
5000
400000 10 3000 3000
: ¢ : : S e By 2
= £ 4000 R = S 2%00 = = = = 2500
S = F os E ¢ = = = E ¢
€ 300000 c c c © 200000 c € 80000 c
o o (=] =] =] =] (=} =]
= = = = 2000 = = el = 2000
2 S X000 2 > ~ S 20000 > 3
(v} [v] v 06] Y 1¢0000 [v] [v]]
¢ 2 % % & 2 - %
& 200000]] oy 1500 S &S & 3 1500
g 04 100000
40000
1000 10000 1000
100000 1000
02 %00 50000 20000 %00
0 0 0.0 om B . o 0 o ow 0N «
m— (hoftime-ubp? wes /bpftime-rDpf s /bpfRime-livm seees <WASM> <NATIVE=>

* LLVM jit can be the fastest
BeﬂChmark: J‘T * LLVM is heavy? AOT is on the way

21

Existing eBPF use cases can be run without or with
minor fixes

* bcc tools, bpftrace and ebpf_exporter

E\/a ‘ U at| O r] * Bash, Memory alloc, SSL/TLS, get host

latency

& Cases * Opensnoop, Sigsnoop, syscount

* Deepflow

* A complex Application Observability project
using eBPF

22

* Bpftrace: can be running entirely in userspace, without
kernel support eBPF, tracing syscall or uprobe

* BCC: the tools from top half of the picture can be run in

Bpftra Ceé 3 nd BCC userspace, tracing Applications, Runtimes and System

Call Interface

* We have ported and tested some of bee/libbpf-tools
and bpftrace

* Prometheus ebpf_exporter is working as well

INFO: Global shm destructed
Linux bec/BPF Tracing Tools rootgmnfe-pve:~/bpftime# bpftime load -- /root/bpftrace/build/src/bpftrace -e 'tracepoint:raw sysc
alls:sys enter { @[comm] = count(); }

c* java* node* php* mysqld_gslower

ucalls uflow . : 3-14 info] manager constructed
P eeenia T Scbineweter PYthent mbytl UL SRR ey ; 6-00] Linfo] Inics
ug | sslsniff - e r]
A filetop \ A\ * // T 1:46][info][1761762] Global shm constructed. global shm open type @ for bpftime ma
filelife fileslower t
vEscount vfsstat Applications :Z':T::zop Sy e 1 crs -
\ = 1:47][info][1761762] Enabling helper groups i, kernel, shm map by default
cachestat cachetop untimes SXSCSNoop : B infol[1761762] Cre: ap wi vpe 2
sy v ey g sis 47][info][1761762] Create map with type 27
mount snoop l System Libraries » pidpersec
e 1 cpudist cpuwalk : 18-14 : 1:47][info][1761762] Create map with type 5
argdist ‘ \ b System Call Interface '“”qlzsn;:‘fgt:: : B-14 47][info][1761762] Create map with type 27
g‘l;:g:gg:z’ \\ b / cpuunclaimed : B-14 : 1:47][info][1761762] Create map with type 2
lock
fanclatency bis 4 i Scheduler ‘ offeputime wad:e:;toi;\e -
stackcount "
profile » File Systems , TCPIUDP A 4-'-"‘ offwaketime softirgs
] slabratetop
53::'3125., / Vot Merie) Virtual 4—'*/ oonktll; mesileek
- - 1. A
extddist extdslower 7 - - Memory shmsnoop drsncop @[whoami]: 24
nfsslover nfedist 4 Block Device Net Device hardirgs INFO: Global shm destructed
xfsslower xfsdis - criticalstat Amnfe- bt i
g Aeaal e / / Device Drivers ttysnoop root@mnfe-pve:~/bpftimet ||
. /
mdflush 1y4top biosnoop teptop toplife toptracer
Other: biolatency bitesize tepoonnect tcpaccept tepconnlat liestat |CPUs

2ol vatiinony, T EmETean Copatkon Comtev — https://github.com/eunomia-
. bpf/bpftime/tree/master/example/bpftrace
23

Kernel vs. User SS

sslsniff: a bcc tool to captures
SSL/TLS data In userspace

Compared to no SSL interception:

20000

17500

* Kernel SSL Sniff reduces requests/sec
by 57.98%, transfer/sec by 58.06%

* Userspace SSL Sniff reduces
requests/sec by 12.35%, transfer/sec
by 12.30%

15000
L 12500
L.

g
¢ 10000
g
=
7500

5000
2500

0

wrk https://127.0.0.1:4043/index.html -c 100 -d 10

Test Environment: Linux version 6.2.0, Nginx version
1.22.0, and wrk version 4.2.0.

oniff on Nginx

Transfer per Second

5
|
4 2.:
")
E
g | o
w3 >
E]
% s
c L]
")
S
2t
183
t - Kemel 551 Salf N Ussarspace SSL SniN

e

Average Latency

Requests per Second
|

r
|
1

.
III
fr
|
- Nofn

fer/sec {MB)

T

24

Deepflow: a complex
workload

Application Observability using eBPF

5k+ LOC of kernel eBPF code, uprobe, kprobe, socket, and
tracepoints work together

Deployed in production and published in SIGCOMM 23

Uprobe in L7 observability may be slow:
* Userspace Uprobe:
* Reduces requests/sec by 15.93%
* Reduces transfer/sec by about 15.88%
* Kernel Uprobe:
* Reduces requests/sec by approximately 21.99%.
* Reduces transfer/sec by about 21.96%.

*Test with all features enabled, golang http server with goroutine tracing

Requests/sec

Requests per Second Transfer per Second (MB)

50000

40000+

30000

200001

10000

6

Transfer/sec (MB)
~N w b

._a

Userspace Uprobe B Kem el Uprocbe @R No Effect

Prefimsinary
* Evgarus

Extraction ® < |

|
]
1
|
|
: .IW(NM [0 Purver @
|
o o 57
|

25

RoOadmaps

Possible new usecases:

* Network related eBPF in userspace
* Currently userspace eBPF can be used in DPDK, but No Control Plane for it
* Programable userspace network stack, with existing eBPF Applications

* Use userspace eBPF to speed up fuse
* Android or fuse for Cloud Storage
* Filter in userspace

* Hotpatch userspace functions

Any new ideas?

26

Roadmaps

Improvements:

More benchmarks and evaluations

Make it works better with kernel eBPF
* Improve compatibility: more maps and helpers support

Performance optimize for LLVM JIT and runtime
LLVM AOT compile eBPF for resource constrains environments
Make sure the eBPF is not attacked

More tests, Cl and cleaner code

27

Open problems

BPF_F_MMAP currently only for arrays, how to make a better-performance hash
map shared between kernel and user space?

* |Introduce new hash map types?

* Implement a basic hash map on top of array map?
* Let kernel eBPF prog access userspace maps?

* Use cache and sync them with syscall?

Error propagation: can kernel eBPF wait for userspace operations?
Unprivileged eBPF type?

Security models?

28

Take away & QA

* Userspace uprobe can be 10x faster than kernel uprobe

* Shm maps and dynamically inject into running process

* Compatible with existing eBPF toolchains, libraries, applications
* Work together with kernel eBPF

Questions? Comments? Possible new use cases?
Please tell us-
@: A0
https:/./c:uthub.com/eunoma—bpf/bprme .,.“gz‘ £ Tha N kS e |Ot|

yunwei356@gmail.com @!." w? .N;

29

https://github.com/eunomia-bpf/bpftime

eBPF

USE CASES

@Y Networking
) Security

@:\ Observability

Dynamically and safely program the kernel for
efficient networking, observability, tracing, and
security

USER SPACE KERNEL

Projects @ Kernel Runtime

\\ ® Verifier & JIT Helper API
\\ 0.0
/(®e*®
0OS Runtime Maps
0
@ Application Tracing Profiling Monitoring ~ teresreees E a Kernel Stack

31

-eatures of bpftime

Run eBPF in userspace just like in the kernel

Achieve 10x speedup vs. kernel uprobes.

Use shared eBPF maps for data & control.

Compatible with clang, libbpf, and existing eBPF toolchains; supports CO-RE & BTF.

Includes cross-platform interpreter & Near native speed LLVM JIT compiler, support
using ubpf JIT alternative

Inject eBPF runtime to Any running Process without restart or manually recompile

Working together with kernel eBPF maps, support “offload” and run from kernel

32

4. Syscall may be slow, can we change how the
kernel-user interaction works by user and kernel
eBPF?

Motivation

eBPF maps can work cross boundary and bridge the
userspace and kernel, without syscall overhead:

S &
§ FR) _\;é‘?"?«l\?f e
\ R/ | xk_du cerve * BPF_F_MMAP for share memory between kernel and
,“L fl =, userspace

ot M e * eBPF ring buffer and user ring buffer: similar to

louring

eBPF programs can patch kernel and userspace
dynamically

Why not Wasm?

Why not Wasm? Different usecases

eBPF: performance first, use verifier for security

Wasm: security first, use SFl for security

* Wasi or eBPF Relies on underlying libraries for complex operations, e.g., Wasi-nn.

* Wasi for Wasm require additional validation and runtime checks, leading to high performance
costs.

* Manual integration needed, making it less adaptable to APl version changes.

34

Whny not DBI tools?

There exists a lot of DBI tools, Frida, pin, etc...

Traditional DBI tools use sandbox for isolation, eBPF use verifier

eBPF can access deep data structs with pointers in the applications, without runtime checks

eBPF can relocation between difference userspace application versions (CO-RE)

eBPF can summarize data from multiple processes, both user and kernel at runtime

A large community and growing ecosystem

35

-Xxamples

* Use syscall tracepoint to
monitor open and close
syscall, with ring buffer for
output

https://github.com/eunomia-
bpf/bpftime

Usage @

$ sudo ~/.bpftime/bpftime load ./example/opensnoop/opensnoop
[2023-18-09 £4:36:33.891]
[2023-10-09 £4:36:33.892]

[2823-16-09 24:
PID COMM
72181 victim
72181 victim
72181 victim
72181 victim

[info] manager constructed

{info] global_shm_open_type & for bpftime_maps_shm

36:33][info][23993] Enabling helper groups £f1, kernel, shm_map by default

FD ERR PATH

3 @ test.ixt
3 8 test.Txt
3 @ test.ixt
3 9 test.txt

In another terminal, run the victim program:

$ sudo ~/.bpftime/bpftime

[2023-18-99 84:
[2023-10-99 £4:
[2823-18-99 84:
[2023-18-09 B4:

[2623-18-09 e4:

test.txt closed

Opening test.tXT

test.txt opened

Closing test.tx

38
38

38:
i8:

38:

c.

:16.

+16.

fd=3

196]
197

6.198]
;.198]
3,260]

start -s example/opensnoop/victim
[info] Entering neéw main..
info] Using agent /root/.bpftime/libbpftime-agent.so
[info] Page zero setted up..
[info] Rewriting executable segments..

{info] Loading dynamic library..

Design goals

1.Enhanced Performance and Flexibility:
Enable faster and more flexible execution of eBPF programs within userspace.

2.Toolchain Compatibility:
Ensure seamless integration with existing eBPF toolchains like clang and libbpf.

3.Transparent Execution of Complex Workloads:
Support efficient execution of real-world complex eBPF workloads using userspace
uprobe, support running userspace eBPF together with kernel eBPF

4.Safety and Security:
Use kernel or userspace verifier to make sure the eBPF will not break userspace App.

5.Non-intrusive Integration:
Enable integration without kernel changes, or manual intervention on the userspace side.

37

Challenges

* Userspace libraries and toolchain of eBPF has complex operations
* |Invoke syscall bpf, perf event, epoll, mmap, etc
* Data section and maps need relocation
* CO-RE or LLVM for different kernel versions
* Complex operations on maps for control and communications

* eBPF needs to be attached to events
* Real world eBPF applications has a mix of kernel kprobe and uprobe

38

Challenges

* Userspace libraries and toolchain of eBPF has complex operations

* eBPF needs to be attached to events and helpers
* A subset of Kernel helpers can be enabled in userspace
* What kind of events can be captured in userspace: Uprobe and syscall
* How to find a similar but faster approach to attach to userspace
* Uprobe can be attach when a process starts, or dynamically inject at run
time
* How to capture all syscall in userspace
* Real world eBPF applications has a mix of kernel kprobe and uprobe

39

Challenges

* Userspace libraries and toolchain of eBPF has
complex operations

* eBPF needs to be attached to events and
helpers

* Real world eBPF applications has a mix of
kernel kprobe and uprobe

* How to make userspace eBPF progs using
kernel maps

40

Security

* Verifier-Ensured Safety
* Runtime Memory Protection

* Enable unprivileged kernel map access by pin
map
* Split the share memory to multiple sections:

* The agent eBPF runtime can only read the
bpf programs and metadata section

* Cannot modify or delete any section.
* can read or write the map data section

41

Uprobe and Kprobe mix design: prog

Observation 1:
* Only the uprobe attach and reletaed bpf program needs to be changed

* bpf_probe_write_user is enabled by default, and can change behavior of syscall by
modify userspace attr before it's copied into kernel.

=>We can make eBPF prog load and attach in userspace without even changing the
kernel

* Trace the bpf syscall, record & replay (No always working)

* When the uprobe is attached, find the related prog and maps from kernel
(Works)

* Can use kernel verifier or userspace verifier

42

Uprobe and Kprobe mix design: map

Observation 2:
* Some maps Is only used for collecting function args, use by only uprobe or kprobe

* Only few maps need to be used by both kernel eBPF or uprobe eBPF: most of them are related
to thread, goroutines, process info, not update frequently

Solutions: No system call in helpers, using kernel maps with share memory and async
* ARRAY_MAPS: BPF_F_MMAP (mmap support)
* HASH_MAPS: Let kernel eBPF access userspace maps, or use Cache & Syscall? Open problems.

* Ring buffer/perf event: use bpf user ring buffer to submit back to kernel

43

Uprobe and Kprobe mix design: data

Observation 3.

* Some Uprobe programs need to access deep kernel data structs (Rare cases)
* For example, in deepflow project, SSL/TLS hook will get tcp seq to link L4 to L7 traffic for integrated analysis
* Need access to socket data structs, task structs
* This cannot be easily achieved in userspace

* However, access to kernel data structs needs a serials of helper call and checks, it's time
consuming

* The Uprobe overhead itself is only 20%-30% or less in deepflow, put it in userspace may not have too much
benefits

Potential Solutions: Configurable Uprobe in userspace
* Only necessary Uprobe eBPF programs in userspace, some Uprobe can also run in kernel

* Automatically put some in userspace, some in kernel based on profile (Similar to OSDI'23 UB)

44

