

Bpftime: Userspace eBPF
runtime

https://github.com/eunomia-bpf/bpftime

Yusheng Zheng

yunwei356@gmail.com

2

https://github.com/eunomia-bpf/bpftime

Agenda

• Why a new userspace eBPF runtime?
• Kernel Uprobe Performance Issues
• Kernel eBPF Security Concerns and limited configurable
• Other userspace eBPF runtime limitations
• Existing Non-kernel eBPF Usecases

• Introduction to bpftime

• How it works

• Examples & benchmark

• Roadmap

• Q&A

3

Why bpftime?

Uprobe: User-level dynamic tracing

1. Kernel Uprobe Performance Issues:

• Current UProbe implementation
necessitates two kernel context copies.

• Results in significant performance overhead.

• Not suitable for real-time monitoring in
latency-sensitive applications.

And Kernel Syscall tracepoint:

Syscall tracepoints will hook all syscalls and
require filter for specific process

Uprobe's Wide Adoption in Production

• Traces user-space protocols: SSL, TLS, HTTP2.

• Monitors memory allocation and detects leaks.

• Tracks threads and goroutine dynamics.

• Provides passive, non-instrumental tracing.

• And more...

4

Why bpftime?

2. Kernel eBPF Security Concerns

eBPF programs run in kernel mode, requiring root access.

• Increases attack surface, posing risks like container escape.

• Inherent vulnerabilities in eBPF can lead to Kernel Exploits.

Kernel eBPF limited configurable

• Verifier has limited the operation of eBPF, config eBPF or
make it Turing-complete requires kernel change

• Add new helper or new feature also requires kernel change

5

Why bpftime?

3. Current userspace eBPF runtime
Limitations

Possible user space eBPF usecases:

• User space observability

• User space network

• User space Configuration, plugins and
filters

Cannot run workloads in current eBPF
ecosystem with existing userspace eBPF

6

Existing userspace eBPF

• Ubpf: ELF parsing, simple hash map,
arm64, x86 JIT, Helper. GitHub.

• Rbpf: Helper, JIT, VM. GitHub.

• Drawbacks:

• Complex integration and usage

• cannot use kernel eBPF loader and
toolchains, e.g. libbpf/clang

• No attach support.

• No interprocess or kernel maps
access.

• Limited functionality in userspace.

• JIT supports for only arm64 or x86

https://github.com/iovisor/ubpf
https://github.com/qmonnet/rbpf

Existing Non-kernel eBPF Usecases

• Qemu+uBPF: Combines Qemu with uBPF. Video.

• Oko: Extends Open vSwitch-DPDK with BPF. Enhances tools for better integration. GitHub.

• Solana: Userspace eBPF for High-performance Smart Contract. GitHub.

• DPDK eBPF: Libraries for fast packet processing. Enhanced by Userspace eBPF.

• eBPF for Windows: Brings eBPF toolchains and runtime to Windows kernel.

Papers:

• Rapidpatch: Firmware Hotpatching for Real-Time Embedded Devices

• Femto-Containers: Lightweight Virtualization and Fault Isolation For Small Software
Functions on Low-Power IoT Microcontrollers

Networks + plugins + edge runtime + smart contract + hot patch + Windows

7

https://www.youtube.com/watch?v=yE1RXf9d7ic
https://github.com/Orange-OpenSource/Ok
https://github.com/solana-labs/solana
https://www.usenix.org/conference/usenixsecurity22/presentation/he-yi

Bpftime: Userspace eBPF runtime

bpftime, a full-featured, high-performance eBPF runtime designed to operate in userspace：

• Fast Uprobe and Syscall hook capabilities

• Userspace uprobe can be 10x faster than kernel uprobe

• No mannual instrumentation or restart required, similar to kernel probe

• Trace the user functions, syscalls or modify user function behavior

• Compatible with kernel eBPF toolchains and libraries

• No need modify eBPF App

• Interprocess maps or kernel maps support, work together with kernel eBPF

• Support “offload to userspace” and verify with kernel verifier

• New LLVM JIT compiler for eBPF

8

Current support features

Userspace eBPF shared memory map types:

• BPF_MAP_TYPE_HASH

• BPF_MAP_TYPE_ARRAY

• BPF_MAP_TYPE_RINGBUF

• BPF_MAP_TYPE_PERF_EVENT_ARRAY

• BPF_MAP_TYPE_PERCPU_ARRAY

• BPF_MAP_TYPE_PERCPU_HASH

User-kernel shared maps:

• BPF_MAP_TYPE_HASH

• BPF_MAP_TYPE_ARRAY

• BPF_MAP_TYPE_PERCPU_ARRAY

• BPF_MAP_TYPE_PERF_EVENT_ARRAY

9

Prog types can attached in userspace:

• tracepoint:raw_syscalls:sys_enter

• tracepoint:syscalls:sys_exit_*

• tracepoint:syscalls:sys_enter_*

• uretprobe:*

• uprobe:*

You can also define other static
tracepoints and prog types in userspace
app.

Support 22 kernel helper functions

Support kernel or userspace verifier

Test JIT with bpf_conformance

Uprobe and kprobe mix: 2 modes

• Run eBPF in userspace only (mode 1)

• Can run without kernel on non-linux systems

• Not very suitable for large eBPF applications

• maps in shm can’t be used by kernel eBPF programs

• Run eBPF in userspace with kernel eBPF, a bpftime-daemon (mode 2)

• Compatible with kernel uprobe in behavior
• Attach to new process or running process automatically

• Support mix of uprobe and kprobe, socket…

• Similar to fuse: userspace daemon + kernel code
• No modify kernel, using eBPF module to monitor or change the behavior of

BPF syscalls

10

Examples
Use uprobe to monitor
userspace malloc
function in libc, with
hash maps in
userspace

11

Examples
Use uprobe to monitor
userspace malloc
function in libc, with
hash maps, compatible
with kernel

12

Mode 1: Run
eBPF in
userspace only

• Can run tools like bcc and bpftrace without
modification

13

eBPF program

eBPF program source

Existing eBPF toolchains：
clang/bpftool/bpftrace…

eBPF userspace applications

eBPF bytecode

eBPF maps

bpf syscall

verifier

JIT
compiler

Target process

Uprobe

Trap

breakpoint

tracepoint

syscall

kprobe

socket

load

attach

Userspace library: libbpf…

load
UserspaceUserspace

Kernel space

attachOriginal Kernel eBPF
design: for reference

function

Context
switch

14

eBPF program source

Existing eBPF toolchains：
clang/bpftool/bpftrace…

eBPF userspace applications

eBPF bytecode

bpf function call

Target process

Share memory

inlineHook

tracepoint

uprobe

socket
attach

Userspace library: libbpf…

Userspace

inject

bpftime:
userspace eBPF
only (mode 1)

function

eBPF maps

bpftime-syscall.so

verifier

bpftime-agent.so

program
JIT

compiler

kprobe

syscall

Kernel space

AOT
compiler(todo)

15

eBPF progs

How it works:
injection

Support two types of
injecting runtime share
library:

• For a running process:
Ptrace (Based on Frida)

• At the beginning of a new
process: LD_PRELOAD

16

How it works:
trampoline

Current hook implementation is based on binary
rewriting:

• Userspace function hook: frida-gum

• Syscall hooks: zpoline and pmem/syscall_intercept.

• Can be easily extend with new trampoline methods

17

https://github.com/frida/frida-gum
https://www.usenix.org/conference/atc23/presentation/yasukata
https://github.com/pmem/syscall_intercept

Mode 2:
eBPF in
userspace work
with kernel

• Can run complex observability agents like
deepflow

• Transparently work with kernel eBPF

• Using kernel eBPF maps

• “Offload” eBPF to userspace

18

eBPF program source

Existing eBPF toolchains

eBPF userspace applications

eBPF bytecode Target process

Userspace library: libbpf…

UserspaceInject by daemon

bpftime:
userspace eBPF
mix with kernel
eBPF (mode 2)

bpftime-agent.so

User bpf

Kernel space

bpf syscall

loadload

uprobe

Kernel bpf

eBPF mapsverifier

JIT
compiler

kprobe

socket

attachattach

Mmap or ring buffer (User and kernel)

Bpftime
daemon

Bpftime kernel
Code (eBPF)

hook

Monitor and interact
with kernel eBPF
events and proc exec

19

Benchmark: attach overhead

20

Benchmark: JIT
• LLVM jit can be the fastest

• LLVM is heavy? AOT is on the way

21

Evaluation
& Cases

Existing eBPF use cases can be run without or with
minor fixes

• bcc tools, bpftrace and ebpf_exporter

• Bash, Memory alloc, SSL/TLS, get host
latency

• Opensnoop, Sigsnoop, syscount

• Deepflow

• A complex Application Observability project
using eBPF

22

https://github.com/eunomia-bpf/bpftime/tree/master/example/bpftrace

Bpftrace and BCC

• Bpftrace: can be running entirely in userspace, without
kernel support eBPF, tracing syscall or uprobe

• BCC: the tools from top half of the picture can be run in
userspace, tracing Applications, Runtimes and System
Call Interface

• We have ported and tested some of bcc/libbpf-tools
and bpftrace

• Prometheus ebpf_exporter is working as well

https://github.com/eunomia-
bpf/bpftime/tree/master/example/bpftrace

23

Test Environment: Linux version 6.2.0, Nginx version 1.22.0, and wrk version 4.2.0.

Kernel vs. User SSLSniff on Nginx

sslsniff: a bcc tool to captures
SSL/TLS data in userspace

Compared to no SSL interception:

• Kernel SSL Sniff reduces requests/sec
by 57.98%, transfer/sec by 58.06%

• Userspace SSL Sniff reduces
requests/sec by 12.35%, transfer/sec
by 12.30%

wrk https://127.0.0.1:4043/index.html -c 100 -d 10

Test Environment: Linux version 6.2.0, Nginx version
1.22.0, and wrk version 4.2.0.

24

Deepflow: a complex
workload

• Application Observability using eBPF

• 5k+ LOC of kernel eBPF code, uprobe, kprobe, socket, and
tracepoints work together

• Deployed in production and published in SIGCOMM 23

• Uprobe in L7 observability may be slow:
• Userspace Uprobe:

• Reduces requests/sec by 15.93%
• Reduces transfer/sec by about 15.88%

• Kernel Uprobe:
• Reduces requests/sec by approximately 21.99%.
• Reduces transfer/sec by about 21.96%.

*Test with all features enabled, golang http server with goroutine tracing

25

Roadmaps

Possible new usecases:

• Network related eBPF in userspace

• Currently userspace eBPF can be used in DPDK, but No Control Plane for it

• Programable userspace network stack, with existing eBPF Applications

• Use userspace eBPF to speed up fuse

• Android or fuse for Cloud Storage

• Filter in userspace

• Hotpatch userspace functions

Any new ideas?

26

Roadmaps

Improvements:

• More benchmarks and evaluations

• Make it works better with kernel eBPF

• Improve compatibility: more maps and helpers support

• Performance optimize for LLVM JIT and runtime

• LLVM AOT compile eBPF for resource constrains environments

• Make sure the eBPF is not attacked

• More tests, CI and cleaner code

27

Open problems

• BPF_F_MMAP currently only for arrays, how to make a better-performance hash
map shared between kernel and user space?
• Introduce new hash map types?

• Implement a basic hash map on top of array map?

• Let kernel eBPF prog access userspace maps?

• Use cache and sync them with syscall?

• Error propagation: can kernel eBPF wait for userspace operations?

• Unprivileged eBPF type?

• Security models?

• …

28

Take away & QA

• Userspace uprobe can be 10x faster than kernel uprobe

• Shm maps and dynamically inject into running process

• Compatible with existing eBPF toolchains, libraries, applications

• Work together with kernel eBPF

Questions? Comments? Possible new use cases?
Please tell us…

https://github.com/eunomia-bpf/bpftime

yunwei356@gmail.com
Thanks a lot!

29

https://github.com/eunomia-bpf/bpftime

Backup

30

eBPF
Dynamically and safely program the kernel for
efficient networking, observability, tracing, and
security

31

Features of bpftime

• Run eBPF in userspace just like in the kernel

• Achieve 10x speedup vs. kernel uprobes.

• Use shared eBPF maps for data & control.

• Compatible with clang, libbpf, and existing eBPF toolchains; supports CO-RE & BTF.

• Includes cross-platform interpreter & Near native speed LLVM JIT compiler, support
using ubpf JIT alternative

• Inject eBPF runtime to Any running Process without restart or manually recompile

• Working together with kernel eBPF maps, support “offload” and run from kernel

32

Motivation

4. Syscall may be slow, can we change how the
kernel-user interaction works by user and kernel
eBPF?

eBPF maps can work cross boundary and bridge the
userspace and kernel, without syscall overhead:

• BPF_F_MMAP for share memory between kernel and
userspace

• eBPF ring buffer and user ring buffer: similar to
iouring

eBPF programs can patch kernel and userspace
dynamically

Why not Wasm?

Why not Wasm? Different usecases

eBPF: performance first, use verifier for security

Wasm: security first, use SFI for security

• Wasi or eBPF Relies on underlying libraries for complex operations, e.g., Wasi-nn.

• Wasi for Wasm require additional validation and runtime checks, leading to high performance
costs.

• Manual integration needed, making it less adaptable to API version changes.

34

Why not DBI tools?

There exists a lot of DBI tools, Frida, pin, etc…

• Traditional DBI tools use sandbox for isolation, eBPF use verifier

• eBPF can access deep data structs with pointers in the applications, without runtime checks

• eBPF can relocation between difference userspace application versions (CO-RE)

• eBPF can summarize data from multiple processes, both user and kernel at runtime

• A large community and growing ecosystem

35

Examples

• Use syscall tracepoint to
monitor open and close
syscall, with ring buffer for
output

https://github.com/eunomia-
bpf/bpftime

Design goals

1.Enhanced Performance and Flexibility:
Enable faster and more flexible execution of eBPF programs within userspace.

2.Toolchain Compatibility:
Ensure seamless integration with existing eBPF toolchains like clang and libbpf.

3.Transparent Execution of Complex Workloads:
Support efficient execution of real-world complex eBPF workloads using userspace
uprobe, support running userspace eBPF together with kernel eBPF

4.Safety and Security:
Use kernel or userspace verifier to make sure the eBPF will not break userspace App.

5.Non-intrusive Integration:
Enable integration without kernel changes, or manual intervention on the userspace side.

37

Challenges

• Userspace libraries and toolchain of eBPF has complex operations

• Invoke syscall bpf, perf event, epoll, mmap, etc…

• Data section and maps need relocation

• CO-RE or LLVM for different kernel versions

• Complex operations on maps for control and communications

• eBPF needs to be attached to events

• Real world eBPF applications has a mix of kernel kprobe and uprobe

38

Challenges

• Userspace libraries and toolchain of eBPF has complex operations

• eBPF needs to be attached to events and helpers

• A subset of Kernel helpers can be enabled in userspace

• What kind of events can be captured in userspace: Uprobe and syscall

• How to find a similar but faster approach to attach to userspace

• Uprobe can be attach when a process starts, or dynamically inject at run
time

• How to capture all syscall in userspace

• Real world eBPF applications has a mix of kernel kprobe and uprobe

39

Challenges

• Userspace libraries and toolchain of eBPF has
complex operations

• eBPF needs to be attached to events and
helpers

• Real world eBPF applications has a mix of
kernel kprobe and uprobe

• How to make userspace eBPF progs using
kernel maps

40

Security

• Verifier-Ensured Safety

• Runtime Memory Protection

• Enable unprivileged kernel map access by pin
map

• Split the share memory to multiple sections:

• The agent eBPF runtime can only read the
bpf programs and metadata section

• Cannot modify or delete any section.

• can read or write the map data section

41

Uprobe and Kprobe mix design: prog

Observation 1:

• Only the uprobe attach and reletaed bpf program needs to be changed

• bpf_probe_write_user is enabled by default, and can change behavior of syscall by
modify userspace attr before it’s copied into kernel.

➔We can make eBPF prog load and attach in userspace without even changing the
kernel

• Trace the bpf syscall, record & replay (No always working)

• When the uprobe is attached, find the related prog and maps from kernel
(Works)

• Can use kernel verifier or userspace verifier

42

Uprobe and Kprobe mix design: map

Observation 2：

• Some maps is only used for collecting function args, use by only uprobe or kprobe

• Only few maps need to be used by both kernel eBPF or uprobe eBPF: most of them are related
to thread, goroutines, process info, not update frequently

Solutions: No system call in helpers, using kernel maps with share memory and async

• ARRAY_MAPS: BPF_F_MMAP (mmap support)

• HASH_MAPS: Let kernel eBPF access userspace maps, or use Cache & Syscall? Open problems.

• Ring buffer/perf event: use bpf user ring buffer to submit back to kernel

43

Uprobe and Kprobe mix design: data

Observation 3：

• Some Uprobe programs need to access deep kernel data structs (Rare cases)
• For example, in deepflow project, SSL/TLS hook will get tcp seq to link L4 to L7 traffic for integrated analysis

• Need access to socket data structs, task structs

• This cannot be easily achieved in userspace

• However, access to kernel data structs needs a serials of helper call and checks, it’s time
consuming

• The Uprobe overhead itself is only 20%-30% or less in deepflow, put it in userspace may not have too much
benefits

Potential Solutions: Configurable Uprobe in userspace

• Only necessary Uprobe eBPF programs in userspace, some Uprobe can also run in kernel

• Automatically put some in userspace, some in kernel based on profile (Similar to OSDI’23 UB)

44

